Skip to content

Documentation for Roi.py

Roi

Provides implementation of Regions-of-Interest (ROI) objects that are used for real-time ROI tracking in various controller. Additionally, ROIs can also be loaded from an mzML file and converted into Chemical objects for simulation input.

FrequentistRoiAligner

FrequentistRoiAligner(
    mz_tolerance_absolute=1e-08,
    mz_tolerance_ppm=10,
    rt_tolerance=0.5,
    mz_column_pos=1,
    rt_column_pos=2,
    intensity_column_pos=3,
    min_rt_width=1e-06,
    min_mz_width=1e-06,
    n_categories=1,
)

Bases: RoiAligner

TODO: add docstring comment This class does ...

Source code in vimms/Roi.py
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
def __init__(
    self,
    mz_tolerance_absolute=1e-8,
    mz_tolerance_ppm=10,
    rt_tolerance=0.5,
    mz_column_pos=1,
    rt_column_pos=2,
    intensity_column_pos=3,
    min_rt_width=0.000001,
    min_mz_width=0.000001,
    n_categories=1,
):
    """
    TODO: ask Ross or Vinny to add comment

    Args:
        mz_tolerance_absolute:
        mz_tolerance_ppm:
        rt_tolerance:
        mz_column_pos:
        rt_column_pos:
        intensity_column_pos:
        min_rt_width:
        min_mz_width:
        n_categories:
    """

    self.mz_tolerance_absolute, self.mz_tolerance_ppm, self.rt_tolerance = (
        mz_tolerance_absolute,
        mz_tolerance_ppm,
        rt_tolerance,
    )
    self.mz_column_pos, self.rt_column_pos, self.intensity_column_pos = (
        mz_column_pos,
        rt_column_pos,
        intensity_column_pos,
    )
    self.min_rt_width, self.min_mz_width = min_rt_width, min_mz_width

    self.n_categories = n_categories
    self.peaksets, self.files_loaded, self.list_of_boxes = [], [], []
    self.sample_names, self.sample_types = [], []
    self.mz_weight, self.rt_weight = 75, 25
    self.peaksets2boxes, self.peaksets2fragintensities = {}, {}
    self.addition_method = None

get_boxes

get_boxes(method='mean')

Converts peaksets to generic boxes in a different way

Parameters:

Name Type Description Default
method
'mean'

Returns: ???

Source code in vimms/Roi.py
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
def get_boxes(self, method="mean"):
    """
    Converts peaksets to generic boxes in a different way

    Args:
        method:

    Returns: ???

    """
    boxes = super().get_boxes(method)
    categories = np.unique(np.array(self.sample_types))
    enough_categories = (
        min(Counter(self.sample_types).values()) > 1 and len(categories) == self.n_categories
    )
    pvalues = self.get_p_values(enough_categories)
    for i, box in enumerate(boxes):
        box.pvalue = pvalues[i]
    return boxes

get_p_values

get_p_values(enough_catergories)

Parameters:

Name Type Description Default
enough_catergories
required

Returns: ???

Source code in vimms/Roi.py
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
def get_p_values(self, enough_catergories):
    """

    Args:
        enough_catergories:

    Returns: ???

    """
    # need to match boxes, not base chemicals
    if enough_catergories:
        p_values = []
        # sort X
        X = np.array(self.to_matrix())
        # sort y
        categories = np.unique(np.array(self.sample_types))
        if self.n_categories == 2:  # logistic regression
            x = np.array([1 for i in self.sample_types])
            if "control" in categories:
                control_type = "control"
            else:
                control_type = categories[0]
            x[np.where(np.array(self.sample_types) == control_type)] = 0
            x = sm.add_constant(x)
            for i in range(X.shape[0]):
                y = np.log(X[i, :] + 1)
                model = sm.OLS(y, x)
                p_values.append(model.fit(disp=0).pvalues[1])
        else:  # classification
            pass
    else:
        p_values = [None for ps in self.peaksets]
    return p_values

Roi

Roi(mz, rt, intensity, id=None)

A class to store an ROI (Regions-of-interest). An ROI is a region of consecutive scans that potentially form a chromatographic peak. This is the first step in peak detection but before the region is identified to be a peak or not. This class maintains 3 lists -- mz, rt and intensity. When a new point (mz,rt,intensity) is added, it updates the list and the mean mz which is required.

Constructs a new ROI

Parameters:

Name Type Description Default
mz

the initial m/z of this ROI. Can be either a single value or a list of values.

required
rt

the initial rt of this ROI. Can be either a single value or a list of values.

required
intensity

the initial intensity of this ROI. Can be either a single value or a list of values.

required
id

ID of this ROI if provided

None
Source code in vimms/Roi.py
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
def __init__(self, mz, rt, intensity, id=None):
    """
    Constructs a new ROI

    Args:
        mz: the initial m/z of this ROI. Can be either a single value
            or a list of values.
        rt: the initial rt  of this ROI. Can be either a single value
            or a list of values.
        intensity: the initial intensity  of this ROI. Can be either
                   a single value or a list of values.
        id: ID of this ROI if provided
    """
    self.id = id
    self.fragmentation_events = []
    self.fragmentation_intensities = []
    self.max_fragmentation_intensity = 0.0
    self.mz_list = [mz]
    self.rt_list = [rt]
    self.intensity_list = [intensity]
    self.n = len(self.mz_list)
    self.mz_sum = sum(self.mz_list)
    self.mean_mz = self.calculate_mean_mz()
    self.min_rt = self.rt_list[0]
    self.max_rt = self.rt_list[-1]
    self.length_in_seconds = self.max_rt - self.min_rt
    self.is_fragmented = False
    self.can_fragment = True
    self.last_frag_rt = None

__getitem__

__getitem__(idx)

Returns a single point in this ROI at the specified index

Parameters:

Name Type Description Default
idx

the index of item to retrieve

required

Returns: a tuple of (rt, m/z, intensity) value

Source code in vimms/Roi.py
255
256
257
258
259
260
261
262
263
264
265
266
def __getitem__(self, idx):
    """
    Returns a single point in this ROI at the
    specified index

    Args:
        idx: the index of item to retrieve

    Returns: a tuple of (rt, m/z, intensity) value

    """
    return list(zip(self.rt_list, self.mz_list, self.intensity_list))[idx]

__lt__

__lt__(other)

Compares this ROI to other based on the mean m/z value. Used for sorting.

Parameters:

Name Type Description Default
other

the other ROI object for comparison

required

Returns: comparison is done by mean m/z of ROIs

Source code in vimms/Roi.py
268
269
270
271
272
273
274
275
276
277
278
279
def __lt__(self, other):
    """
    Compares this ROI to other based on the mean m/z value.
    Used for sorting.

    Args:
        other: the other ROI object for comparison

    Returns: comparison is done by mean m/z of ROIs

    """
    return self.mean_mz <= other.mean_mz

__repr__

__repr__()

Returns a string representation of this ROI

Source code in vimms/Roi.py
281
282
283
284
285
286
287
288
289
290
291
292
def __repr__(self):
    """
    Returns a string representation of this ROI
    """
    return "ROI with data points=%d fragmentations=%d mz " "(%.4f-%.4f) rt (%.4f-%.4f)" % (
        self.n,
        len(self.fragmentation_events),
        self.mz_list[0],
        self.mz_list[-1],
        self.rt_list[0],
        self.rt_list[-1],
    )

add

add(mz, rt, intensity)

Adds a point to this ROI

Parameters:

Name Type Description Default
mz

the m/z value to add

required
rt

the retention time value to add

required
intensity

the intensity value to add

required

Returns: None

Source code in vimms/Roi.py
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
def add(self, mz, rt, intensity):
    """
    Adds a point to this ROI

    Args:
        mz: the m/z value to add
        rt: the retention time value to add
        intensity: the intensity value to add

    Returns: None

    """
    self.mz_list.append(mz)
    self.rt_list.append(rt)
    self.intensity_list.append(intensity)
    self.mz_sum += mz
    self.n += 1
    self.mean_mz = self.calculate_mean_mz()
    self.min_rt = self.rt_list[0]
    self.max_rt = self.rt_list[-1]
    self.length_in_seconds = self.max_rt - self.min_rt

add_fragmentation_event

add_fragmentation_event(scan, precursor_intensity)

Stores the fragmentation events (MS2 scan) linked to this ROI

Parameters:

Name Type Description Default
scan

the MS2 scan

required
precursor_intensity

the precursor intensity

required

Returns: None

Source code in vimms/Roi.py
129
130
131
132
133
134
135
136
137
138
139
140
141
142
def add_fragmentation_event(self, scan, precursor_intensity):
    """
    Stores the fragmentation events (MS2 scan) linked to this ROI

    Args:
        scan: the MS2 scan
        precursor_intensity: the precursor intensity

    Returns: None

    """
    self.fragmentation_events.append(scan)
    self.fragmentation_intensities.append(precursor_intensity)
    self.max_fragmentation_intensity = max(self.fragmentation_intensities)

estimate_apex

estimate_apex()

Returns the apex retention time

Source code in vimms/Roi.py
101
102
103
104
105
def estimate_apex(self):
    """
    Returns the apex retention time
    """
    return self.rt_list[np.argmax(self.intensity_list)]

fragmented

fragmented(rt)

Sets flags to indicate that this ROI can or has been fragmented

Source code in vimms/Roi.py
69
70
71
72
73
74
75
def fragmented(self, rt):
    """
    Sets flags to indicate that this ROI can or has been fragmented
    """
    self.is_fragmented = True
    self.can_fragment = True
    self.last_frag_rt = rt

get_autocorrelation

get_autocorrelation(lag=1)

Computes auto-correlation of this ROI intensity signal

Source code in vimms/Roi.py
92
93
94
95
96
def get_autocorrelation(self, lag=1):
    """
    Computes auto-correlation of this ROI intensity signal
    """
    return pd.Series(self.intensity_list).autocorr(lag=lag)

get_boxes_overlap

get_boxes_overlap(boxes, min_rt_width, min_mz_width, rt_shift=0, mz_shift=0)

TODO: ask Ross or Vinny to add comment

Parameters:

Name Type Description Default
boxes

the boxes to check

required
min_rt_width

minimum RT width of the box

required
min_mz_width

minimum m/z width of the box

required
rt_shift

shift in retention time, if any

0
mz_shift

shift in m/z, if any

0

Returns: ???

Source code in vimms/Roi.py
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
def get_boxes_overlap(self, boxes, min_rt_width, min_mz_width, rt_shift=0, mz_shift=0):
    """
    TODO: ask Ross or Vinny to add comment

    Args:
        boxes: the boxes to check
        min_rt_width: minimum RT width of the box
        min_mz_width: minimum m/z width of the box
        rt_shift: shift in retention time, if any
        mz_shift: shift in m/z, if any

    Returns: ???

    """

    roi_box = self.to_box(min_rt_width, min_mz_width, rt_shift, mz_shift)
    # print(roi_box)
    overlaps = [roi_box.overlap_2(box) for box in boxes]
    return overlaps

get_last_datum

get_last_datum()

Returns the last (m/z, rt, intensity) point of this ROI

Source code in vimms/Roi.py
249
250
251
252
253
def get_last_datum(self):
    """
    Returns the last (m/z, rt, intensity) point of this ROI
    """
    return self.mz_list[-1], self.rt_list[-1], self.intensity_list[-1]

get_max_intensity

get_max_intensity()

Returns the maximum intensity value of this ROI

Source code in vimms/Roi.py
80
81
82
83
84
def get_max_intensity(self):
    """
    Returns the maximum intensity value of this ROI
    """
    return max(self.intensity_list)

get_min_intensity

get_min_intensity()

Returns the minimum intensity value of this ROI

Source code in vimms/Roi.py
86
87
88
89
90
def get_min_intensity(self):
    """
    Returns the minimum intensity value of this ROI
    """
    return min(self.intensity_list)

get_roi_overlap

get_roi_overlap(boxes, min_rt_width, min_mz_width, rt_shift=0, mz_shift=0)

TODO: ask Ross or Vinny to add comment

Parameters:

Name Type Description Default
boxes

the boxes to check

required
min_rt_width

minimum RT width of the box

required
min_mz_width

minimum m/z width of the box

required
rt_shift

shift in retention time, if any

0
mz_shift

shift in m/z, if any

0

Returns: ???

Source code in vimms/Roi.py
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
def get_roi_overlap(self, boxes, min_rt_width, min_mz_width, rt_shift=0, mz_shift=0):
    """
    TODO: ask Ross or Vinny to add comment

    Args:
        boxes: the boxes to check
        min_rt_width: minimum RT width of the box
        min_mz_width: minimum m/z width of the box
        rt_shift: shift in retention time, if any
        mz_shift: shift in m/z, if any

    Returns: ???

    """
    roi_box = self.to_box(min_rt_width, min_mz_width, rt_shift, mz_shift)
    overlaps = [roi_box.overlap_3(box) for box in boxes]
    return overlaps

to_box

to_box(
    min_rt_width,
    min_mz_width,
    fixed_rt_dist=None,
    fixed_mz_dist=None,
    rt_shift=0,
    mz_shift=0,
)

Returns a generic box representation of this ROI

Parameters:

Name Type Description Default
min_rt_width

minimum RT width of the box

required
min_mz_width

minimum m/z width of the box

required
fixed_rt_dist

if not set to None, overrides the default rt-width (in seconds)

None
fixed_mz_width

if not set to None, overrides the default mz-width (in ppm) of

required
rt_shift

shift in retention time, if any

0
mz_shift

shift in m/z, if any

0

Returns: a vimms.Box.GenericBox object.

Source code in vimms/Roi.py
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
def to_box(
    self,
    min_rt_width,
    min_mz_width,
    fixed_rt_dist=None,
    fixed_mz_dist=None,
    rt_shift=0,
    mz_shift=0,
):
    """
    Returns a generic box representation of this ROI

    Args:
        min_rt_width: minimum RT width of the box
        min_mz_width: minimum m/z width of the box
        fixed_rt_dist: if not set to None, overrides the default rt-width (in seconds)
        of the box, setting it to twice the parameter value. If set to None uses the
        maximum rt-range of points belonging to this RoI as the box's rt-width
        fixed_mz_width: if not set to None, overrides the default mz-width (in ppm) of
        the box, setting it twice the parameter value. If set to None uses the
        maximum mz-range of points belonging to this RoI as the box's rt-width
        rt_shift: shift in retention time, if any
        mz_shift: shift in m/z, if any

    Returns: a [vimms.Box.GenericBox][] object.

    """
    min_rt, max_rt = min(self.rt_list), max(self.rt_list)
    min_mz, max_mz = min(self.mz_list), max(self.mz_list)

    min_rt, max_rt = self._set_fixed_bounds_for_box(fixed_rt_dist, min_rt, max_rt)
    dalton_dist = self.mean_mz * fixed_mz_dist / 1e6 if fixed_mz_dist is not None else None
    min_mz, max_mz = self._set_fixed_bounds_for_box(dalton_dist, min_mz, max_mz)

    return GenericBox(
        min_rt + rt_shift,
        max_rt + rt_shift,
        min_mz + mz_shift,
        max_mz + mz_shift,
        min_xwidth=min_rt_width,
        min_ywidth=min_mz_width,
        intensity=self.max_fragmentation_intensity,
        id=self.id,
        roi=self,
    )

to_chromatogram

to_chromatogram()

Converts this ROI to a ViMMS EmpiricalChromatogram object

Source code in vimms/Roi.py
144
145
146
147
148
149
150
151
152
153
def to_chromatogram(self):
    """
    Converts this ROI to a ViMMS EmpiricalChromatogram object
    """
    if self.n == 0:
        return None
    chrom = EmpiricalChromatogram(
        np.array(self.rt_list), np.array(self.mz_list), np.array(self.intensity_list)
    )
    return chrom

RoiAligner

RoiAligner(
    mz_tolerance_absolute=1e-08,
    mz_tolerance_ppm=10,
    rt_tolerance=0.5,
    mz_column_pos=1,
    rt_column_pos=2,
    intensity_column_pos=3,
    min_rt_width=1e-06,
    min_mz_width=1e-06,
    n_categories=1,
)

A class that aligns multiple ROIs in different samples

TODO: ask Ross or Vinny to add comment

Parameters:

Name Type Description Default
mz_tolerance_absolute
1e-08
mz_tolerance_ppm
10
rt_tolerance
0.5
mz_column_pos
1
rt_column_pos
2
intensity_column_pos
3
min_rt_width
1e-06
min_mz_width
1e-06
n_categories
1
Source code in vimms/Roi.py
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
def __init__(
    self,
    mz_tolerance_absolute=1e-8,
    mz_tolerance_ppm=10,
    rt_tolerance=0.5,
    mz_column_pos=1,
    rt_column_pos=2,
    intensity_column_pos=3,
    min_rt_width=0.000001,
    min_mz_width=0.000001,
    n_categories=1,
):
    """
    TODO: ask Ross or Vinny to add comment

    Args:
        mz_tolerance_absolute:
        mz_tolerance_ppm:
        rt_tolerance:
        mz_column_pos:
        rt_column_pos:
        intensity_column_pos:
        min_rt_width:
        min_mz_width:
        n_categories:
    """

    self.mz_tolerance_absolute, self.mz_tolerance_ppm, self.rt_tolerance = (
        mz_tolerance_absolute,
        mz_tolerance_ppm,
        rt_tolerance,
    )
    self.mz_column_pos, self.rt_column_pos, self.intensity_column_pos = (
        mz_column_pos,
        rt_column_pos,
        intensity_column_pos,
    )
    self.min_rt_width, self.min_mz_width = min_rt_width, min_mz_width

    self.n_categories = n_categories
    self.peaksets, self.files_loaded, self.list_of_boxes = [], [], []
    self.sample_names, self.sample_types = [], []
    self.mz_weight, self.rt_weight = 75, 25
    self.peaksets2boxes, self.peaksets2fragintensities = {}, {}
    self.addition_method = None

add_picked_peaks

add_picked_peaks(
    mzml_file,
    peak_file,
    sample_name,
    picking_method="mzmine",
    sample_type=None,
    half_isolation_window=0,
    allow_last_overlap=False,
    rt_shifts=None,
    mz_shifts=None,
)

TODO: ask Ross or Vinny to add comment

Parameters:

Name Type Description Default
mzml_file
required
peak_file
required
sample_name
required
picking_method
'mzmine'
sample_type
None
half_isolation_window
0
allow_last_overlap
False
rt_shifts
None
mz_shifts
None

Returns: ???

Source code in vimms/Roi.py
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
def add_picked_peaks(
    self,
    mzml_file,
    peak_file,
    sample_name,
    picking_method="mzmine",
    sample_type=None,
    half_isolation_window=0,
    allow_last_overlap=False,
    rt_shifts=None,
    mz_shifts=None,
):
    """
    TODO: ask Ross or Vinny to add comment

    Args:
        mzml_file:
        peak_file:
        sample_name:
        picking_method:
        sample_type:
        half_isolation_window:
        allow_last_overlap:
        rt_shifts:
        mz_shifts:

    Returns: ???

    """
    self.sample_names.append(sample_name)
    self.sample_types.append(sample_type)

    these_peaks, frag_intensities = [], []
    temp_boxes = self.load_boxes(peak_file, picking_method)
    temp_boxes = update_picked_boxes(temp_boxes, rt_shifts, mz_shifts)
    self.list_of_boxes.append(temp_boxes)

    mzml = path_or_mzml(mzml_file)
    scans2boxes, boxes2scans = map_boxes_to_scans(
        mzml,
        temp_boxes,
        half_isolation_window=half_isolation_window,
        allow_last_overlap=allow_last_overlap,
    )
    precursor_intensities, scores = get_precursor_intensities(boxes2scans, temp_boxes, "max")

    for i, box in enumerate(temp_boxes):
        source_id = f"{sample_name}_{i}"
        peak_mz = box.mz
        peak_rt = box.rt_in_seconds
        these_peaks.append(Peak(peak_mz, peak_rt, box.height, sample_name, source_id))
        frag_intensities.append(precursor_intensities[i])

    self._align(these_peaks, temp_boxes, frag_intensities, sample_name)

add_sample

add_sample(rois, sample_name, sample_type=None, rt_shifts=None, mz_shifts=None)

TODO: ask Ross or Vinny to add comment

Parameters:

Name Type Description Default
rois
required
sample_name
required
sample_type
None
rt_shifts
None
mz_shifts
None

Returns: ???

Source code in vimms/Roi.py
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
def add_sample(self, rois, sample_name, sample_type=None, rt_shifts=None, mz_shifts=None):
    """
    TODO: ask Ross or Vinny to add comment

    Args:
        rois:
        sample_name:
        sample_type:
        rt_shifts:
        mz_shifts:

    Returns: ???

    """
    self.sample_names.append(sample_name)
    self.sample_types.append(sample_type)

    these_peaks, frag_intensities, temp_boxes = [], [], []
    for i, roi in enumerate(rois):
        source_id = f"{sample_name}_{i}"
        peak_mz = roi.mean_mz
        peak_rt = roi.estimate_apex()
        peak_intensity = roi.get_max_intensity()
        these_peaks.append(Peak(peak_mz, peak_rt, peak_intensity, sample_name, source_id))
        frag_intensities.append(roi.max_fragmentation_intensity)
        rt_shift = 0 if rt_shifts is None else rt_shifts[i]
        mz_shift = 0 if mz_shifts is None else mz_shifts[i]
        temp_boxes.append(roi.to_box(self.min_rt_width, self.min_mz_width, rt_shift, mz_shift))

    # do alignment, adding the peaks and boxes, and recalculating max
    # frag intensity
    self._align(these_peaks, temp_boxes, frag_intensities, sample_name)

get_boxes

get_boxes(method='mean')

Converts peaksets to generic boxes

Parameters:

Name Type Description Default
method

which method to use for the conversion

'mean'

Returns: a list of vimms.Box.GenericBox objects.

Source code in vimms/Roi.py
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
def get_boxes(self, method="mean"):
    """
    Converts peaksets to generic boxes

    Args:
        method: which method to use for the conversion

    Returns: a list of [vimms.Box.GenericBox][] objects.

    """
    if method == "max":
        f1, f2 = min, max
    else:
        f1 = f2 = mean

    boxes = []
    for ps in self.peaksets:
        box_list = self.peaksets2boxes[ps]
        x1 = f1(b.pt1.x for b in box_list)
        x2 = f2(b.pt2.x for b in box_list)
        y1 = f1(b.pt1.y for b in box_list)
        y2 = f2(b.pt2.y for b in box_list)
        intensity = max(self.peaksets2fragintensities[ps])
        boxes.append(
            GenericBox(
                x1,
                x2,
                y1,
                y2,
                intensity=intensity,
                min_xwidth=self.min_rt_width,
                min_ywidth=self.min_mz_width,
            )
        )
    return boxes

get_max_frag_intensities

get_max_frag_intensities()

Returns the maximum fragmentation intensities of peaksets

Source code in vimms/Roi.py
1078
1079
1080
1081
1082
def get_max_frag_intensities(self):
    """
    Returns the maximum fragmentation intensities of peaksets
    """
    return [max(self.peaksets2fragintensities[ps]) for ps in self.peaksets]

to_matrix

to_matrix()

Converts aligned peaksets to nicely formatted intensity matrix (rows: peaksets, columns: files)

Source code in vimms/Roi.py
1032
1033
1034
1035
1036
1037
1038
1039
1040
def to_matrix(self):
    """
    Converts aligned peaksets to nicely formatted intensity matrix
    (rows: peaksets, columns: files)
    """
    return np.array(
        [[ps.get_intensity(fname) for fname in self.files_loaded] for ps in self.peaksets],
        dtype=np.double,
    )

RoiBuilder

RoiBuilder(roi_params, smartroi_params=None)

A class to construct ROIs. This can be used in real-time to track ROIs in a controller, or for extracting ROIs from an mzML file.

Initialises an ROI Builder object.

Parameters:

Name Type Description Default
roi_params

parameters for ROI building, as defined in vimms.Roi.RoiBuilderParams.

required
smartroi_params

other SmartROI parameters, as defined in vimms.Roi.SmartRoiParams.

None
grid

a grid object, if available

required
Source code in vimms/Roi.py
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
def __init__(self, roi_params, smartroi_params=None):
    """
    Initialises an ROI Builder object.

    Args:
        roi_params: parameters for ROI building, as defined in [vimms.Roi.RoiBuilderParams][].
        smartroi_params: other SmartROI parameters, as defined in
                         [vimms.Roi.SmartRoiParams][].
        grid: a grid object, if available
    """
    self.roi_params = roi_params
    self.smartroi_params = smartroi_params

    self.roi_type = ROI_TYPE_NORMAL
    if self.smartroi_params is not None:
        self.roi_type = ROI_TYPE_SMART
    assert self.roi_type in [ROI_TYPE_NORMAL, ROI_TYPE_SMART]

    # Create ROI
    self.live_roi = []
    self.dead_roi = []
    self.junk_roi = []

    # fragmentation to Roi dictionaries
    self.frag_roi_dicts = []  # scan_id, roi_id, precursor_intensity
    self.roi_id_counter = 0

    # count how many times an ROI is not grown
    self.skipped_roi_count = defaultdict(int)

add_scan_to_roi

add_scan_to_roi(scan)

Stores the information on which scans and frag events are associated to this ROI

Source code in vimms/Roi.py
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
def add_scan_to_roi(self, scan):
    """
    Stores the information on which scans and frag events are associated
    to this ROI
    """
    frag_event_ids = np.array([event["scan_id"] for event in self.frag_roi_dicts])
    which_event = np.where(frag_event_ids == scan.scan_id)[0]
    live_roi_ids = np.array([roi.id for roi in self.live_roi])
    which_roi = np.where(live_roi_ids == self.frag_roi_dicts[which_event[0]]["roi_id"])[0]
    if len(which_roi) > 0:
        self.live_roi[which_roi[0]].add_fragmentation_event(
            scan, self.frag_roi_dicts[which_event[0]]["precursor_intensity"]
        )
        del self.frag_roi_dicts[which_event[0]]
    else:
        pass  # hopefully shouldnt happen

get_good_rois

get_good_rois()

Returns all ROIs above filtering criteria

Source code in vimms/Roi.py
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
def get_good_rois(self):
    """
    Returns all ROIs above filtering criteria
    """
    # length check
    filtered_roi = [
        roi
        for roi in self.live_roi
        if roi.get_num_unique_scans() >= self.roi_params.min_roi_length
    ]

    # intensity check:
    # Keep only the ROIs that can be fragmented above
    # at_least_one_point_above threshold.
    all_roi = filtered_roi + self.dead_roi
    if self.roi_params.at_least_one_point_above > 0:
        keep = []
        for roi in all_roi:
            if any(it > self.roi_params.at_least_one_point_above for it in roi.intensity_list):
                keep.append(roi)
    else:
        keep = all_roi
    return keep

get_mz_intensity

get_mz_intensity(i)

Returns the (m/z, intensity, ROI ID) value of point at position i in this ROI

Parameters:

Name Type Description Default
i

the index of point to return

required

Returns: a tuple of (mz, intensity, roi ID)

Source code in vimms/Roi.py
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
def get_mz_intensity(self, i):
    """
    Returns the (m/z, intensity, ROI ID) value of point at position i in
    this ROI

    Args:
        i: the index of point to return

    Returns: a tuple of (mz, intensity, roi ID)

    """
    mz = self.current_roi_mzs[i]
    intensity = self.current_roi_intensities[i]
    roi_id = self.current_roi_ids[i]
    return mz, intensity, roi_id

get_rois

get_rois()

Returns all ROIs

Source code in vimms/Roi.py
797
798
799
800
801
def get_rois(self):
    """
    Returns all ROIs
    """
    return self.live_roi + self.dead_roi

set_fragmented

set_fragmented(current_task_id, i, roi_id, rt, intensity)

Updates this ROI to indicate that it has been fragmented

Parameters:

Name Type Description Default
current_task_id

the current task ID

required
i

index of fragmented ROI in the live ROI list

required
roi_id

the ID of ROI

required
rt

time of fragmentation

required
intensity

intensity at fragmentation

required

Returns: None

Source code in vimms/Roi.py
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
def set_fragmented(self, current_task_id, i, roi_id, rt, intensity):
    """
    Updates this ROI to indicate that it has been fragmented

    Args:
        current_task_id:  the current task ID
        i: index of fragmented ROI in the live ROI list
        roi_id: the ID of ROI
        rt: time of fragmentation
        intensity: intensity at fragmentation

    Returns: None

    """
    self.live_roi[i].fragmented(rt)

    # Add information on which scan has fragmented this ROI
    self.frag_roi_dicts.append(
        {"scan_id": current_task_id, "roi_id": roi_id, "precursor_intensity": intensity}
    )

    # need to track for intensity non-overlap
    self.live_roi[i].max_fragmentation_intensity = max(
        self.live_roi[i].max_fragmentation_intensity, intensity
    )

update_roi

update_roi(new_scan)

Updates ROI in real-time based on incoming scans

Parameters:

Name Type Description Default
new_scan

a newly arriving Scan object

required

Returns: None

Source code in vimms/Roi.py
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
def update_roi(self, new_scan):
    """
    Updates ROI in real-time based on incoming scans

    Args:
        new_scan: a newly arriving Scan object

    Returns: None

    """
    if new_scan.ms_level == 1:

        # Sort ROIs in live_roi according to their m/z values.
        # Ensure that the live roi fragmented flags and the last RT
        # are also consistent with the sorting order.
        self.live_roi.sort()

        # Current scan retention time of the MS1 scan is the RT of all
        # points in this scan
        current_rt = new_scan.rt

        # check that there's no ROI with skip_count > self.max_skips_allowed
        skip_counts = np.array(list(self.skipped_roi_count.values()))
        assert np.sum(skip_counts > self.roi_params.max_gaps_allowed) == 0

        # The set of ROIs that are not grown yet.
        # Initially all currently live ROIs are included, and they're
        # removed once grown.
        not_grew = set(self.live_roi)

        # For every (mz, intensity) in scan ..
        for idx in range(len(new_scan.intensities)):
            current_intensity = new_scan.intensities[idx]
            current_mz = new_scan.mzs[idx]

            if current_intensity >= self.roi_params.min_roi_intensity:

                # Create a dummy ROI object to represent the current m/z
                # value. This produces either a normal ROI or smart ROI
                # object, depending on self.roi_type
                roi = self._get_roi_obj(current_mz, 0, 0, None)

                # Match dummy ROI to currently live ROIs based on mean
                # m/z values. If no match, then return None
                match_roi = self._match(roi, self.live_roi, self.roi_params.mz_tol)
                if match_roi:

                    # Got a match, so we grow this ROI
                    match_roi.add(current_mz, current_rt, current_intensity)

                    # ROI has been matched and can be removed from not_grew
                    if match_roi in not_grew:
                        not_grew.remove(match_roi)

                        # this ROI has been grown so delete from skip count if possible
                        try:
                            del self.skipped_roi_count[match_roi]
                        except KeyError:
                            pass

                else:

                    # No match, so create a new ROI and insert it in the
                    # right place in the sorted list
                    new_roi = self._get_roi_obj(
                        current_mz, current_rt, current_intensity, self.roi_id_counter
                    )
                    self.roi_id_counter += 1
                    bisect.insort_right(self.live_roi, new_roi)

        # Separate the ROIs that have not been grown into dead or junk ROIs
        # Dead ROIs are longer than self.min_roi_length but they haven't
        # been grown. Junk ROIs are too short and not grown.
        for roi in not_grew:

            # if too much gaps ...
            self.skipped_roi_count[roi] += 1
            if self.skipped_roi_count[roi] > self.roi_params.max_gaps_allowed:

                # then set the roi to either dead or junk (depending on length)
                if roi.get_num_unique_scans() >= self.roi_params.min_roi_length:
                    self.dead_roi.append(roi)
                else:
                    self.junk_roi.append(roi)

                # Remove not-grown ROI from the list of live ROIs
                pos = self.live_roi.index(roi)
                del self.live_roi[pos]

                # this ROI is either dead or junk, so delete from skip count
                # as we don't need to track it anymore
                del self.skipped_roi_count[roi]

        self.current_roi_ids = [roi.id for roi in self.live_roi]
        self.current_roi_mzs = [roi.mz_list[-1] for roi in self.live_roi]
        self.current_roi_intensities = [roi.intensity_list[-1] for roi in self.live_roi]
        self.current_roi_length = np.array(
            [roi.get_num_unique_scans() for roi in self.live_roi]
        )

RoiBuilderParams

RoiBuilderParams(
    mz_tol=10,
    min_roi_length=0,
    min_roi_intensity=0,
    at_least_one_point_above=0,
    start_rt=0,
    stop_rt=100000.0,
    max_gaps_allowed=0,
)

A parameter object that stores various settings required for ROIBuilder

Initialises an RoiBuilderParams object

Parameters:

Name Type Description Default
mz_tol

m/z tolerance

10
min_roi_length

minimum ROI length

0
min_roi_intensity

minimum intensity to be included for ROI building

0
at_least_one_point_above

keep only the ROIs containing at least one point above this threshold

0
start_rt

start RT of scans to be included for ROI building

0
stop_rt

end RT of scans to be included for ROI building

100000.0
max_gaps_allowed

the number of gaps allowed in successive scans when building ROIs

0
Source code in vimms/Roi.py
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
def __init__(
    self,
    mz_tol=10,
    min_roi_length=0,
    min_roi_intensity=0,
    at_least_one_point_above=0,
    start_rt=0,
    stop_rt=1e5,
    max_gaps_allowed=0,
):
    """
    Initialises an RoiBuilderParams object

    Args:
        mz_tol: m/z tolerance
        min_roi_length: minimum ROI length
        min_roi_intensity: minimum intensity to be included for ROI building
        at_least_one_point_above: keep only the ROIs containing at least one point
                                  above this threshold
        start_rt: start RT of scans to be included for ROI building
        stop_rt: end RT of scans to be included for ROI building
        max_gaps_allowed: the number of gaps allowed in successive scans
                          when building ROIs
    """
    if mz_tol < 0.1:
        logger.warning(f"Is your m/z tolerance correct? mz_tol={mz_tol}")

    self.mz_tol = mz_tol
    self.min_roi_length = min_roi_length
    self.min_roi_intensity = min_roi_intensity
    self.at_least_one_point_above = at_least_one_point_above
    self.start_rt = start_rt
    self.stop_rt = stop_rt
    self.max_gaps_allowed = max_gaps_allowed

SmartRoi

SmartRoi(mz, rt, intensity, smartroi_params, id=None)

Bases: Roi

A smarter ROI class that can track the states in which it should be fragmented.

SmartROI is described further in the following paper: - Davies, Vinny, et al. "Rapid Development of Improved Data-Dependent Acquisition Strategies." Analytical chemistry 93.14 (2021): 5676-5683.

Constructs a new Smart ROI object

Parameters:

Name Type Description Default
mz

the initial m/z of this ROI. Can be either a single value or a list of values.

required
rt

the initial rt of this ROI. Can be either a single value or a list of values.

required
intensity

the initial intensity of this ROI. Can be either a single value or a list of values.

required
smartroi_params

other SmartROI parameters, as defined in vimms.Roi.SmartRoiParams.

required
id

the ID of this ROI

None
Source code in vimms/Roi.py
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
def __init__(self, mz, rt, intensity, smartroi_params, id=None):
    """
    Constructs a new Smart ROI object

    Args:
        mz: the initial m/z of this ROI.
            Can be either a single value or a list of values.
        rt: the initial rt  of this ROI.
            Can be either a single value or a list of values.
        intensity: the initial intensity  of this ROI.
                   Can be either a single value or a list of values.
        smartroi_params: other SmartROI parameters, as defined in
                         [vimms.Roi.SmartRoiParams][].
        id: the ID of this ROI
    """
    super().__init__(mz, rt, intensity, id=id)
    self.max_at_frag = 0.0
    self.max_since_last_frag = 0.0
    self.params = smartroi_params

    if self.params.initial_length_seconds > 0:
        self.status = SmartRoi.INITIAL_WAITING
        self.can_fragment = False
    else:
        self.status = SmartRoi.CAN_FRAGMENT
        self.can_fragment = True

    self.min_frag_intensity = None

add

add(mz, rt, intensity)

Adds a point to this SmartROI

Parameters:

Name Type Description Default
mz

the m/z value to add

required
rt

the retention time value to add

required
intensity

the intensity value to add

required

Returns: None

Source code in vimms/Roi.py
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
def add(self, mz, rt, intensity):
    """
    Adds a point to this SmartROI

    Args:
        mz: the m/z value to add
        rt: the retention time value to add
        intensity: the intensity value to add

    Returns: None

    """
    super().add(mz, rt, intensity)
    if intensity > self.max_since_last_frag:
        self.max_since_last_frag = intensity

    if self.status == SmartRoi.INITIAL_WAITING:
        if self.length_in_seconds >= self.params.initial_length_seconds:
            self.status = SmartRoi.CAN_FRAGMENT
            self.can_fragment = True

    elif self.status == SmartRoi.AFTER_FRAGMENT:
        self.set_smartroi_rules()

fragmented

fragmented(rt)

Sets this SmartROI as having been fragmented

Source code in vimms/Roi.py
339
340
341
342
343
344
345
346
347
348
349
def fragmented(self, rt):
    """
    Sets this SmartROI as having been fragmented
    """
    self.is_fragmented = True
    self.can_fragment = False
    self.last_frag_rt = rt
    self.fragmented_index = len(self.mz_list) - 1
    self.max_at_frag = self.intensity_list[self.fragmented_index]
    self.max_since_last_frag = self.max_at_frag
    self.status = SmartRoi.AFTER_FRAGMENT

get_can_fragment

get_can_fragment()

Returns the status of whether this SmartROI can be fragmented

Source code in vimms/Roi.py
424
425
426
427
428
def get_can_fragment(self):
    """
    Returns the status of whether this SmartROI can be fragmented
    """
    return self.can_fragment

get_status

get_status()

Returns the current status of this SmartROI

Source code in vimms/Roi.py
351
352
353
354
355
356
357
358
359
360
361
362
def get_status(self):
    """
    Returns the current status of this SmartROI
    """
    if self.status == 0:
        return "INITIAL_WAITING"
    elif self.status == 1:
        return "CAN_FRAGMENT"
    elif self.status == 2:
        return "AFTER_FRAGMENT"
    elif self.status == 3:
        return "POST_PEAK"

set_can_fragment

set_can_fragment(status)

Sets the status of this SmartROI

Parameters:

Name Type Description Default
status

True if this SmartROI can be fragmented again, False otherwise

required

Returns: None

Source code in vimms/Roi.py
430
431
432
433
434
435
436
437
438
439
440
441
def set_can_fragment(self, status):
    """
    Sets the status of this SmartROI

    Args:
        status: True if this SmartROI can be fragmented again,
                False otherwise

    Returns: None

    """
    self.can_fragment = status

SmartRoiParams

SmartRoiParams(
    initial_length_seconds=5,
    reset_length_seconds=1000000.0,
    intensity_increase_factor=10,
    dew=15,
    drop_perc=0.1 / 100,
)

A parameter object that stores various settings required for SmartRoi

Initialises a SmartRoiParams object

Parameters:

Name Type Description Default
initial_length_seconds

the initial length (in seconds) before this ROI can be fragmented

5
reset_length_seconds

the length (in seconds) before this ROI can be fragmented again (CAN_FRAGMENT)

1000000.0
intensity_increase_factor

a factor of which the intensity should increase from the minimum since last fragmentation before this ROI can be fragmented again

10
dew

dynamic exclusion window (DEW) in seconds before this ROI can be fragmented again

15
drop_perc

percentage drop in intensity since last fragmentation before this ROI can be fragmented again

0.1 / 100
Source code in vimms/Roi.py
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
def __init__(
    self,
    initial_length_seconds=5,
    reset_length_seconds=1e6,
    intensity_increase_factor=10,
    dew=15,
    drop_perc=0.1 / 100,
):
    """
    Initialises a SmartRoiParams object

    Args:
        initial_length_seconds: the initial length (in seconds) before
                                this ROI can be fragmented
        reset_length_seconds: the length (in seconds) before this ROI
                              can be fragmented again (CAN_FRAGMENT)
        intensity_increase_factor: a factor of which the intensity
                                   should increase from the **minimum** since
                                   last fragmentation before this ROI can be fragmented again
        dew: dynamic exclusion window (DEW) in seconds before this ROI
             can be fragmented again
        drop_perc: percentage drop in intensity since last fragmentation
                   before this ROI can be fragmented again
    """
    self.initial_length_seconds = initial_length_seconds
    self.reset_length_seconds = reset_length_seconds
    self.intensity_increase_factor = intensity_increase_factor
    self.drop_perc = drop_perc
    self.dew = dew

cosine_score

cosine_score(u, v)

Computes the cosine similarity between two vectors

Parameters:

Name Type Description Default
u

first vector

required
v

second vector

required

Returns: the cosine similarity

Source code in vimms/Roi.py
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
def cosine_score(u, v):
    """
    Computes the cosine similarity between two vectors

    Args:
        u: first vector
        v: second vector

    Returns: the cosine similarity

    """
    numerator = (u * v).sum()
    denominator = np.sqrt((u * u).sum()) * np.sqrt((v * v).sum())
    return numerator / denominator

greedy_roi_cluster

greedy_roi_cluster(roi_list, corr_thresh=0.75, corr_type='cosine')

Performs a greedy clustering of ROIs

Parameters:

Name Type Description Default
roi_list

a list of ROIs to cluster

required
corr_thresh

the threshold on correlation for clustering

0.75
corr_type

correlation type, currently unused

'cosine'

Returns: a list of lists of ROIs, each member list is a cluster.

Source code in vimms/Roi.py
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
def greedy_roi_cluster(roi_list, corr_thresh=0.75, corr_type="cosine"):
    """
    Performs a greedy clustering of ROIs

    Args:
        roi_list: a list of ROIs to cluster
        corr_thresh: the threshold on correlation for clustering
        corr_type: correlation type, currently unused

    Returns: a list of lists of ROIs, each member list is a cluster.

    """
    # sort in descending intensity
    roi_list_copy = [r for r in roi_list]
    roi_list_copy.sort(key=lambda x: max(x.intensity_list), reverse=True)
    roi_clusters = []
    while len(roi_list_copy) > 0:
        roi_clusters.append([roi_list_copy[0]])
        remove_idx = [0]
        if len(roi_list_copy) > 1:
            for i, r in enumerate(roi_list_copy[1:]):
                corr = roi_correlation(roi_list_copy[0], r)
                if corr > corr_thresh:
                    roi_clusters[-1].append(r)
                    remove_idx.append(i + 1)
        remove_idx.sort(reverse=True)
        for r in remove_idx:
            del roi_list_copy[r]

    return roi_clusters

make_roi

make_roi(input_file, roi_params)

Make ROIs from an input file

Parameters:

Name Type Description Default
input_file

input mzML file

required
roi_params

a RoiBuilderParams object

required

the list of good ROI objects that have been filtered according to

Type Description

certain criteria.

Source code in vimms/Roi.py
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
def make_roi(input_file, roi_params):
    """
    Make ROIs from an input file

    Args:
        input_file: input mzML file
        roi_params: a RoiBuilderParams object

    Returns: the list of good ROI objects that have been filtered according to
             certain criteria.

    """

    from vimms.MassSpec import Scan  # import in fn. body to avoid circular import

    run = pymzml.run.Reader(
        input_file,
        MS1_Precision=5e-6,
        extraAccessions=[("MS:1000016", ["value", "unitName"])],
        obo_version="4.0.1",
    )

    scan_id = 0
    roi_builder = RoiBuilder(roi_params)
    for i, spectrum in enumerate(run):
        ms_level = 1
        if spectrum["ms level"] == ms_level:
            current_ms1_scan_rt, units = spectrum.scan_time

            # check that ms1 scan (in seconds) is within bound
            if units == "minute":
                current_ms1_scan_rt *= 60.0
            if current_ms1_scan_rt < roi_params.start_rt:
                continue
            if current_ms1_scan_rt > roi_params.stop_rt:
                break

            # get the raw peak data from spectrum
            mzs, intensities = spectrum_to_arrays(spectrum)

            # update the ROI construction based on the new scan
            scan = Scan(scan_id, mzs, intensities, ms_level, current_ms1_scan_rt)
            roi_builder.update_roi(scan)
            scan_id += 1

    good_roi = roi_builder.get_good_rois()
    return good_roi

plot_roi

plot_roi(roi, statuses=None, log=False)

Plots an ROI

Parameters:

Name Type Description Default
roi

the ROI to plot

required
statuses

flags for coloring

None
log

whether to log the intensity (defaults False)

False

Returns: None

Source code in vimms/Roi.py
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
def plot_roi(roi, statuses=None, log=False):
    """
    Plots an ROI

    Args:
        roi: the ROI to plot
        statuses: flags for coloring
        log: whether to log the intensity (defaults False)

    Returns: None

    """
    if log:
        intensities = np.log(roi.intensity_list)
        plt.ylabel("Log Intensity")
    else:
        intensities = roi.intensity_list
        plt.ylabel("Intensity")
    if statuses is not None:
        colours = []
        for s in statuses:
            if s == "Noise":
                colours.append("red")
            elif s == "Increase":
                colours.append("blue")
            elif s == "Decrease":
                colours.append("yellow")
            else:
                colours.append("green")
        plt.scatter(roi.rt_list, intensities, color=colours)
    else:
        plt.scatter(roi.rt_list, intensities)
    plt.xlabel("RT")
    plt.show()

roi_correlation

roi_correlation(roi1, roi2, min_rt_point_overlap=5, method='pearson')

Computes the correlation between two ROI objects

Parameters:

Name Type Description Default
roi1

first ROI

required
roi2

second ROI

required
min_rt_point_overlap

minimum points that overlap in RT, currently unused

5
method

if 'pearson' then Peason's correlation is used, otherwise the cosine score is used

'pearson'

Returns: the correlation between the two ROIs.

Source code in vimms/Roi.py
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
def roi_correlation(roi1, roi2, min_rt_point_overlap=5, method="pearson"):
    """
    Computes the correlation between two ROI objects

    Args:
        roi1: first ROI
        roi2: second ROI
        min_rt_point_overlap: minimum points that overlap in RT,
                              currently unused
        method: if 'pearson' then Peason's correlation is
                used, otherwise the cosine score is used

    Returns: the correlation between the two ROIs.

    """
    # flip around so that roi1 starts earlier (or equal)
    if roi2.rt_list[0] < roi1.rt_list[0]:
        temp = roi2
        roi2 = roi1
        roi1 = temp

    # check that they meet the min_rt_point overlap
    if roi1.rt_list[-1] < roi2.rt_list[0]:
        # no overlap at all
        return 0.0

    # find the position of the first element in roi2 in roi1
    pos = roi1.rt_list.index(roi2.rt_list[0])

    # print roi1.rt_list
    # print roi2.rt_list
    # print pos

    total_length = max([len(roi1.rt_list), len(roi2.rt_list) + pos])
    # print total_length

    r1 = np.zeros((total_length), np.double)
    r2 = np.zeros_like(r1)

    r1[: len(roi1.rt_list)] = roi1.intensity_list
    r2[pos: pos + len(roi2.rt_list)] = roi2.intensity_list

    if method == "pearson":
        r, _ = pearsonr(r1, r2)
    else:
        r = cosine_score(r1, r2)

    return r

spectrum_to_arrays

spectrum_to_arrays(spectrum)

Converts pymzml spectrum to parallel arrays

Parameters:

Name Type Description Default
spectrum

a pymzml spectrum object

required

a tuple (mzs, intensities) where mzs and intensities are numpy

Type Description

arrays of m/z and intensity values

Source code in vimms/Roi.py
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
def spectrum_to_arrays(spectrum):
    """
    Converts pymzml spectrum to parallel arrays

    Args:
        spectrum: a pymzml spectrum object

    Returns: a tuple (mzs, intensities) where mzs and intensities are numpy
             arrays of m/z and intensity values

    """
    mzs = []
    intensities = []
    for mz, intensity in spectrum.peaks("raw"):
        mzs.append(mz)
        intensities.append(intensity)
    mzs = np.array(mzs)
    intensities = np.array(intensities)
    return mzs, intensities

update_picked_boxes

update_picked_boxes(picked_boxes, rt_shifts, mz_shifts)

Updates picked boxes ??

Parameters:

Name Type Description Default
picked_boxes
required
rt_shifts
required
mz_shifts
required

Returns: ???

Source code in vimms/Roi.py
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
def update_picked_boxes(picked_boxes, rt_shifts, mz_shifts):
    """
    Updates picked boxes ??

    Args:
        picked_boxes:
        rt_shifts:
        mz_shifts:

    Returns: ???

    """
    if rt_shifts is None and mz_shifts is None:
        return picked_boxes

    new_boxes = copy.deepcopy(picked_boxes)
    for box, sec_shift, mz_shift in zip(new_boxes, rt_shifts, mz_shifts):
        if rt_shifts is not None:
            sec_shift = float(sec_shift)
            min_shift = sec_shift / 60.0

            box.rt += min_shift
            box.rt_in_minutes += min_shift
            box.rt_in_seconds += sec_shift
            box.rt_range = [r + min_shift for r in box.rt_range]
            box.rt_range_in_seconds = [r + sec_shift for r in box.rt_range_in_seconds]

        if mz_shifts is not None:
            mz_shift = float(mz_shift)
            box.mz += mz_shift
            box.mz_range = [r + mz_shift for r in box.mz_range]